Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Xin-Hua Li,* Xin-Xiang Lei and Shun Wang

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: lixinhua01@126.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.072$
$w R$ factor $=0.157$
Data-to-parameter ratio $=11.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4,4'-Bipyridinium bis(3,5-dicarboxybenzoate) benzene-1,3,5-tricarboxylic acid hexahydrate

The asymmetric unit of the title compound, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+}$.$2 \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{O}_{6}{ }^{-} \cdot \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, consists of half of a bipyridinium cation, one singly deprotonated 3,5 -dicarboxybenzoate anion, one half of a benzene-1,3,5-tricarboxylic acid molecule and three water molecules that are linked by hydrogen bonds into a network structure. The two halves of the bipyridinium cation are related by an inversion centre and those of the benzene-1,3,5-tricarboxylic acid molecule by twofold rotation.

Comment

Much interest at present is focused on the construction of coordination polymers (Carlucci et al., 1994; Munakata et al., 1999; Hirsch et al., 1997; Hoskins \& Robson, 1990), and a large part of this interest has involved linear pyridyl-donor ligands; these include pyrazine (Carlucci et al., 1995), 4,4'-bipyridine (Yaghi \& Li, 1996) and longer bridges (Soma \& Iwamoto, 1997). Bipyridine has been used extensively before (Huang \& Xiong, 1997). We report here the structure of the title compound, (I), as part of further studies on coordination polymers constructed through hydrogen bonds with pyridyldonor ligands.

(I)

Compound (I) consists of doubly protonated 4,4'-bipyridinium cations, singly deprotonated 3,5-dicarboxybenzoate anions, benzene-1,3,5-tricarboxylic acid molecules and water molecules (Fig. 1) that are linked by hydrogen bonds into a network structure (Fig. 2). There are many labile protons and a complex system of hydrogen bonds (Table 2) in this structure; the IR and NMR spectra are consistent with this. The two halves of the bipyridinium cation are related by an inversion centre and those of the benzene-1,3,5-tricarboxylic acid molecule by twofold rotation.

Figure 1
The structure of (I), with the atom numbering, showing displacement ellipsoids at the 50% probability level. Only one of the two sites for H 9 is shown. Unlabelled atoms in the cation and acid molecule are generated from labelled atoms by the symmetry operations ($-x+\frac{3}{2},-y+\frac{3}{2},-z$) and $\left(-x+1, y,-z+\frac{3}{2}\right)$.

Experimental

The title compound was synthesized by the hydrothermal method from a mixture of benzene-1,3,5-tricarboxylic acid (0.3 mmol), $\mathrm{La}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{mmol}), 4,4^{\prime}$-bipyridine $(0.3 \mathrm{mmol})$ and water $(8.0 \mathrm{ml})$ in a 15.0 ml Teflon-lined stainless steel reactor. The solution was heated at 423 K for 4 d . After reaction, the vessel was cooled slowly to room temperature to give yellow crystals. The prismatic crystals were collected, washed with distilled water and dried in air. The compound is soluble in dimethylformamide and begins to decompose at 393 K . IR (KBr pellet, $400-4000 \mathrm{~cm}^{-1}$): 925.86 , 1181.95, 1257.03, 1384.56, 1508.49, 1708.07, 3483.91 (br). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 3.72(m, 21 \mathrm{H}), 7.82(t, 4 \mathrm{H}), 8.63(d, 9 \mathrm{H}), 8.71$ (t, 4 H).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{O}_{6}{ }^{-} \cdot \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{6} \cdot- \\
& 6 \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=894.69 \\
& \text { Monoclinic, } C 2 / c \\
& a=10.9217(7) \AA \\
& b=21.5274(17) \AA \\
& c=16.4036(11) \AA \\
& \beta=91.037(1)^{\circ} \\
& V=3856.1(5) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.97, T_{\text {max }}=0.98$
10107 measured reflections
$D_{x}=1.541 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3430 reflections
$\theta=1.9-25.1^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, yellow
$0.39 \times 0.20 \times 0.14 \mathrm{~mm}$

3430 independent reflections
3246 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-12 \rightarrow 12$
$k=-25 \rightarrow 25$
$l=-14 \rightarrow 19$

Refinement

```
Refinement on F
R[\mp@subsup{F}{}{2}>2\sigma(\mp@subsup{F}{}{2})]=0.072
wR(F}\mp@subsup{F}{}{2})=0.15
S=1.22
3 4 3 0 \text { reflections}
308 parameters
H}\mathrm{ atoms treated by a mixture of independent and constrained refinement
```


Figure 2
The three-dimensional network formed by hydrogen-bonding interactions in (I), shown as dashed lines. Only one of the two sites for H9 and hydrogen bonds involving it are shown.

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 3-\mathrm{C} 8$	$1.487(3)$	$\mathrm{C} 16-\mathrm{N} 1$	$1.321(5)$
$\mathrm{C} 8-\mathrm{O} 1$	$1.234(3)$	$\mathrm{C} 20-\mathrm{N} 1$	$1.337(5)$
$\mathrm{C} 8-\mathrm{O} 2$	$1.288(3)$		
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{O} 2$	$123.3(2)$	$\mathrm{N} 1-\mathrm{C} 16-\mathrm{C} 17$	$120.5(3)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 3$	$120.4(2)$	$\mathrm{N} 1-\mathrm{C} 20-\mathrm{C} 19$	$119.8(4)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 3$	$116.2(2)$	$\mathrm{C} 16-\mathrm{N} 1-\mathrm{C} 20$	$121.3(4)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 10-\mathrm{H} 10 A \cdots \mathrm{O}^{\text {i }}$	0.80 (3)	2.38 (4)	2.955 (4)	130 (5)
$\mathrm{O} 10-\mathrm{H} 10 A \cdots \mathrm{O} 5^{\mathrm{ii}}$	0.80 (3)	2.48 (4)	3.081 (4)	134 (5)
$\mathrm{O} 11-\mathrm{H} 11 A \cdots \mathrm{O}^{\text {iii }}$	0.81 (3)	1.91 (3)	2.716 (4)	170 (5)
O11-H11B $\cdots \mathrm{O} 7^{\text {iv }}$	0.79 (3)	2.07 (3)	2.854 (4)	169 (5)
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\text {v }}$	0.82	1.88	2.700 (3)	176
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 11$	0.82	1.80	2.616 (4)	175
$\mathrm{O} 8-\mathrm{H} 8 \cdots \mathrm{O} 5^{\text {vi }}$	0.82	1.66	2.476 (3)	171
O9-H9 . . O12	0.82	2.06	2.691 (4)	134
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 10^{\text {vii }}$	0.86	1.87	2.727 (5)	173
$\mathrm{O} 12-\mathrm{H} 12 A \cdots \mathrm{O} 9$	0.81 (3)	1.99 (4)	2.691 (4)	145 (5)
$\mathrm{O} 12-\mathrm{H} 12 B \cdots \mathrm{O} 1$	0.81 (3)	2.39 (4)	2.963 (5)	128 (4)
$\mathrm{O} 12-\mathrm{H} 12 B \cdots \mathrm{O}^{\text {viii }}$	0.81 (3)	2.42 (4)	3.072 (7)	137 (4)

Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}+y, z$; (ii) $x, 1-y, z-\frac{1}{2}$; (iii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $1-x, 1+y, \frac{1}{2}-z$; (v) $1-x, 1-y,-z$; (vi) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; (vii) $\frac{3}{2}-x, \frac{1}{2}-y, 1-z$; (viii) $1-x, y, \frac{1}{2}-z$.

Water H atoms were refined subject to the restraint $\mathrm{O}-\mathrm{H}=$ 0.82 (3) A. Other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $0.82(\mathrm{O}-\mathrm{H})$, $0.86(\mathrm{~N}-\mathrm{H})$ and $0.93 \AA(\mathrm{C}-\mathrm{H})$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ parent atom $)$. The presence of a peak in the difference Fourier map in a suitable location showed O9 to be protonated; however, due to the twofold symmetry, this site must be half occupied and the H atom disordered over the two sites. This H atom was included in the model as part of a rigid rotor, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve

organic papers

structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We acknowledge financial support by Zhejiang Provincial Natural Science Foundation of China (grant Nos. Y404294 and Y404118), the Natural Science Foundation of China (grant No. 20471043) and the ' 151 ' Distinguished Person Foundation of Zhejiang Province.

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Carlucci, L., Ciani, G. \& Proserpio, D. M. (1994). Chem. Commun. pp. $2755-$ 2757.

Carlucci, L., Ciani, G. \& Proserpio, D. M. (1995). Angew. Chem. Int. Ed. Engl. 34, 1895-1899
Hirsch, K. A., Wilson, S. C. \& Moore, J. S. (1997). Chem. Eur. J. 3, 765771.

Hoskins, B. F. \& Robson, R. (1990). J. Am. Chem. Soc. 112, 15461551.

Huang, S. D. \& Xiong, R.-G. (1997). Polyhedron, 16, 3929-3932.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Munakata, M., Wu, L. P. \& Kuroda-Sowa, T. (1999). Adv. Inorg. Chem. 46, 173-178
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.
Soma, T. \& Iwamoto, T. (1997). Acta Cryst. C53, 1819-1821.
Yaghi, O. M. \& Li, H. (1996). J. Am. Chem. Soc. 118, 295-298.

